E-MATHS 001-1 MOCK 2023 OBJECTIVES TEST

Name:	•••••	• • • • • • • • •	• • • • • • • • •	
Class:	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••

ELECTIVE MATHEMATICS 1

MOCK 2023

PARKOSO COMM. SENIOR HIGH SCHOOL, KUMASI FORM THREE A1, SCI, AGRIC & BUS 1 HR 30MIN

Do **not** open this booklet until you are told to do so. While you are waiting, read and observe the following instructions carefully. Write your **FULL NAME** and **CLASS** in **INK** in the space above.

This booklet contains 40 objective test items. Answer all questions. Choose the correct answer to each question and shade it on the shading sheet.

Answer all questions.

[40 marks]

Use the information below to answer Questions 1 and 2.

Two functions are defined on subsets of the real numbers by $f:x \to \frac{2}{x-1}$ and $g:x \to \frac{1}{x}$

- 1. Find $[(f \ o \ g)](x)$.
- A. $1-\frac{1}{2}$
- B. $1+\frac{1}{1}$
- C. $\frac{2x^2}{1-x}$
- D. $\frac{1-x}{x}$
- 2. For what value(s) of x is $[(f \circ g)](x)$ not defined?
- A. x = -1
- B. x = 0
- C. x > 0
- D. x = 1
- 3. In ΔPQR , $\overrightarrow{PQ} = 5i 2j$ and $\overrightarrow{QR} = 4i + 3j$. Find \overrightarrow{RP}
- A. -9i + j
- B. i + 5j
- C. -9i j
- D. -i 5j
- 4. For what values of k is $4x^2 12x + k$, a perfect square?
- A. 9
- B. $\frac{4}{9}$
- $C. -\frac{4}{9}$
- D. –9
- 5. Find the inverse of $\begin{pmatrix} 4 & 2 \\ -3 & -2 \end{pmatrix}$
- A. $\begin{pmatrix} -2 & -1 \\ 1.5 & 1 \end{pmatrix}$
- B. $\begin{pmatrix} -2 & 1 \\ -1.5 & 1 \end{pmatrix}$

$$C.\begin{pmatrix} 1 & -1 \\ 1.5 & -2 \end{pmatrix}$$

D.
$$\begin{pmatrix} 1 & 1 \\ -1.5 & -2 \end{pmatrix}$$

- 6. Simplify $\frac{\log \sqrt{27} \log \sqrt{8}}{\log 3 \log 2}$
- A. $-\frac{1}{4}$
- B. $-\frac{3}{2}$
- C. $\frac{1}{4}$
- D. $\frac{3}{2}$
- 7. Simplify: $\frac{2}{3}\sqrt{162} \sqrt{50}$
- A. $2\sqrt{2}$
- B. $-\sqrt{2}$
- $C.\sqrt{2}$
- D. $3\sqrt{2}$
- 8. How many subsets do the set $A = \{1, 2, 3\}$?
- A. 3
- B. 4
- C. 9
- D. 8
- 9. The mean of 12 number is 18. If each of the numbers is increased by 5, the new mean.
- A. 13
- B. 17
- C. 18
- D. 23
- 10. In a class of 53 students, 36 passed Biology and 29 passed Chemistry. How many students passed both subjects if 2 students did not write the exams?
- A. 11
- B. 12

- C. 13
- D. 14
- 11. Given that $\frac{3x+4}{(x-2)(x+3)} \equiv \frac{P}{x+3} + \frac{Q}{x-2}$, find the value of Q.
- A. -2
- B. -1
- C. 1
- D. 2
- 12. Expand and simplify $(2 \sqrt{3})^2$
- A. $7 4\sqrt{3}$
- B. $1 4\sqrt{3}$
- C. $4 \sqrt{3}$
- D. $4 4\sqrt{3}$
- 13. In how many ways can a committee of 2 women and 3 men be chosen from a group of 7 men and 5 women.
- A. 200
- B. 210
- C. 300
- D. 350
- 14. A binary operation Δ is defined on the set R of real numbers by $x \Delta y = \frac{1}{3}x - 5y$. Find $6 \Delta - 4$
- A. -18
- B. 22
- C. -17
- D. 23
- 15. The inverse of a function f is given by $f^{-1}(x) = \frac{2x}{1-x}$, $x \ne 1$. Find the function f(x)

A.
$$\frac{x}{2+x}$$
, $x \neq -2$

$$B. \frac{x}{2-x} , x \neq 2$$

C.
$$\frac{2}{1-x}$$
, $x = 1$

D.
$$\frac{2}{1+x}$$
, $x \neq -2$

A.
$$\frac{x}{2+x}$$
, $x \neq -2$
B. $\frac{x}{2-x}$, $x \neq 2$
C. $\frac{2}{1-x}$, $x = 1$
D. $\frac{2}{1+x}$, $x \neq -1$
16. Solve $\left(\frac{1}{9}\right)^{x+2} = 243^{x-2}$

- 17. If $\sqrt{5}\cos x + \sqrt{15}\sin x = 0$, for $0^{\circ} < x < 0$ 360, find the values of x
- A. 210° and 330°
- B. 150° and 330°
- C. 150° and 210°
- D. 30° and 150°
- 18. The gradient of $y = 3x^2 + 11x + 7$ at P(x, y)is -1. Find the coordinates of P

- C. (-2, -3)
- D. (-3, -2)
- 19. Find the radius of the circle $2x^2 - 4x + 2y^2 - 6y - 2 = 0$

- 20. Find the equation of the normal to the curve $y = 2x^2 - 5x + 10$ at P(1,7)
- A. y x + 3 = 0
- B. y x 6 = 0
- C. y x + 6 = 0
- D. y + x 3 = 0
- 21. What is the minimum value of $g(x) = 2x^2 2x^2$ 4x + 5
- A. -3
- B. 3
- C. -1
- D. 1
- 22. $f(x) = 3x^3 + 8x^2 + 6x + k$. Find the value of *k* if f(2) = 1
- A. 61
- B. -67
- C. -61
- D. 67
- 23. If α and β are the roots of the equation x^2 x - 3 = 0, find the value of $\alpha^3 + \beta^3$.
- A. 10
- B. 5
- C. -10
- D. $\frac{2}{5}$
- 24. A binary operation is defined on real numbers

by
$$x = y = \frac{2}{3}x + xy$$
. Find $12 = -3$

- A. 44
- B. 28
- C. 17
- D. -28
- 25. Find the quadratic equation whose roots are $-\frac{1}{2}$ and 3

A.
$$2x^2 - 5x + 3 = 0$$

B.
$$2x^2 + 5x + 3 = 0$$

C. $2x^2 + 5x - 3 = 0$

C.
$$2x^2 + 5x - 3 = 0$$

D.
$$2x^2 - 5x - 3 = 0$$

- 26. If $\sin x = \frac{12}{13}$ and $\sin y = \frac{4}{5}$ where x and y are both acute angles, find cos(x + y)
- A. $-\frac{48}{65}$

- - 27. Find the sum of the **first** 20 terms of the sequence: $-7, -3, 1 \dots$
 - A. 690
 - B. 620
 - C. 1240
 - D. 660
 - 28. Find the value of $6(\sqrt{4x^2+1}) = 13x$, where x > 0.
 - A. $\frac{24}{25}$
 - 29. Calculate the distance between the points

$$(-2, -5)$$
 and $(-1, 3)$.

- A. $\sqrt{17}$ units
- B. $\sqrt{5}$ units
- C. $\sqrt{73}$ units
- D. $\sqrt{65}$ units

30. If
$$\mathbf{P} = \begin{pmatrix} 2 & 3 \\ -4 & 1 \end{pmatrix}$$
, $\mathbf{Q} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ and $\mathbf{PQ} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$

 $k \binom{45}{-20}$, find the value of k.

- A. $\frac{4}{5}$
- B. $-\frac{5}{4}$
- C. $\frac{5}{4}$
- D. $-\frac{4}{5}$
- 31. The second and fourth terms of an exponential sequence (G.P.) are $\frac{2}{9}$ and $\frac{8}{81}$ respectively. Find the sixth term of the sequence.
 - A. $\frac{1}{4}$
 - B. $\frac{32}{729}$
 - C. $\frac{81}{32}$
 - D. $\frac{9}{8}$
- 32. If the mean of 2, 5, (x + 1), (x +
 - 2), 7 and 9 is 6, find the median.
 - A. 5.5
 - B. 6.5
 - C. 5.0
 - D. 6.0
- 33. Calculate the mean deviation of 5, 8, 2, 9 and 6.
 - A. 4
 - B. 2
 - C. 5
 - D. 3
- 34. Solve, correct to three significant figures,

$$(0.3)^x = (0.5)^8$$

- B. 4.61
- C. 0.0130
- D. 4.606
- 35. Find the coordinates of the center of the circle $3x^2 + 3y^2 6x + 9y 5 = 0$
 - A. $(1, -\frac{3}{2})$
 - B. $(3, -\frac{9}{2})$
 - C. $\left(-3, \frac{9}{2}\right)$
 - D. $\left(-1, \frac{3}{2}\right)$
- 36. Which of the following vectors is perpendicular to $\binom{-1}{3}$?
 - A. $\binom{1}{3}$
 - B. $\binom{3}{1}$
 - C. $\binom{-3}{1}$
 - D. $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$
- 37. Find, correct to the **nearest** degree, the angle between $\mathbf{p} = 12\mathbf{i} 5\mathbf{j}$ and $\mathbf{q} = 4\mathbf{i} + 3\mathbf{j}$.
 - A. 75°
 - B. 59°
 - C. 76°
 - D. 60°
- 38. The probabilities that John and Jane will pass an examination are 0.9 and 0.7 respectively. Find the probability that at least one of them will pass the examination.
 - A. 0.72
 - B. 0.97
 - C. 0.28
 - D. 0.67

- 39. Given that X and Y are independent events such that P(X) = 0.5, P(Y) = m and $P(X \cup Y) = 0.75$, find the value of m.
 - A. 0.4
 - B. 0.3
 - C. 0.6
 - D. 0.5

- 40. Evaluate: $\lim_{x \to 1} \left(\frac{1-x}{x^2 3x + 2} \right)$
 - A. $\frac{1}{2}$
 - B. -1
 - C. 1
 - D. $-\frac{1}{2}$