OKUAS 4022 MOCK EXAMINATION, 2023 GENERAL MATHEMATICS/ MATHEMATICS (CORE) 2 2 ½ hours Name.....

Index Number.....

OKUAPEMMAN SCHOOLMOCK EXAMINATION

OKUAS, 2023 GENERAL MATHEMATICS/MATHEMATICS (CORE) 2

 $2\frac{1}{2}$ hours

[100 marks]

Write your **name** and **index number** in **ink** in the spaces provided above.

Answer ten questions in all. All the questions in Section A and five questions from Section B.

Z

In each question, all necessary details of workings, including rough work, **must** be shown with the answer.

Give answers as accurately as data and tables allow.

Graph papers are provided for your use in the examination.

The use of non-programmable, silent and cordless calculator is allowed.

SECTION A [40 marks]

Answer all the questions in this section. All questions carry equal marks.

1. (a) Without using mathematical tables or calculators, evaluate $\frac{0.567 \times 0.0015}{0.0005 \times 0.0189}$, leaving your answer in the form $k \times 10^n$, where k is the first non – zero figure.

b) If
$$\frac{5y-x}{8y+3x} = \frac{1}{5}$$
, find, correct to three significant figures, the value of $\frac{x}{y}$.

- 2. a) Given that $m = \left(\frac{px}{y} p^2 x\right)^{\frac{-3}{2}}$,
 - i make x the subject.
 - ii find the value of x when m = -8, y = 1 and p = 3.
- 3. a) Given that $p = \tan 30$ and $q = \tan 45$, simplify without using calculator, $\frac{p-q}{pq}$ leaving your answer in the surd form.
 - b). Find the truth set of the equation log(9x + 3) log(x + 2) = log(x + 3)
- 4. In the diagram ABCD is a circle with center E, $\langle BCD = (2x + 40)^\circ$, $\langle BED = (5x 35)^\circ$, $\langle BAD = (2y + 10)^\circ$ and $\langle EDC = 40^\circ$. Find the values of x and y.

b) In how many years will GH¢312.50 invested at 4% per annum simple interest amount to GH¢500.00?

- 5. The fifth term of an arithmetic progression is three times the first term. If a quarter of the fifth term is 9. Find,
 - i. the first term and common difference
 - ii. the sum of the first eight terms

SECTION B [60 marks] Answer **five** questions **only** from this section. **All** questions carry **equal** mark

~	T 1 0 11 1			a 1			
6.	The following	o is a fre	quency table	of marks	scored by sor	ne candidates ir	an examination.
··	1110 10110	, 10 @ 110		01 111001110	. Deolea 0 j bol		

Marks	0-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99
Frequency	8	10	14	28	46	25	17	9	2	1
`			2							

a) Construct a cumulative frequency table and use it to draw a cumulative frequency curve for the distribution.

b) Use your curve to estimate the;

- i inter quartile range.
- ii percentage of candidates who scored at least 65 marks.
- 7. a) If (y x) is partly constant and partly varies as x. Given that y = 8 when x = 3 and y = 12 when x = 5, find
 - (i) a relation connecting y and x
 - (ii) the value of x when y = 20.

b) A solid cube of side 8cm was melted to form a solid circular cone. The base radius of the cone is 4cm. Calculate, correct to one decimal place, the height of the cone [Take $\pi = \frac{22}{7}$].

8. a) The probability that an athlete will **not** win any of the **three** races is $\frac{1}{4}$.

If the athlete runs in all the races, what is the probability that the athlete will win

- i only the second race
- ii all the three races
- iii **only two** of the races?

(b) The exterior angles of a polygon are 42°, 38°, 57°, x° , $(x + y)^\circ$, $(2x - 15)^\circ$ and $(3x - y)^\circ$. If x is 7° less than y, find the values of x and y.

9. The relation $y = mx^2 + nx + r$, where *m*, *n* and *r* are constants on the interval $-3 \le x \le 4$ has an uncomplete table shown below.

x	-3.0	-2	-1	0	1	2	3	4
у		⁵ / ₃		4				$^{2}/_{3}$

a) Use your table to find the value of *m*, *n* and *r*.

- b) Using a scale of 2cm to 1unit on both axes, draw a graph for the function on the given interval.
- c) From your graph, find
 - i. The value of p for which x = 2.2 and is a member of the truth set of the equation $mx^2 + nx + r = p$.
 - ii. The equation of axis of symmetry of the curve.
 - iii. The truth set of the equation $12 + 3x 2x^2 = 0$.

- 10. Sylvester, Bentil and Dereck are partners in a business and their contributions to the capital are GH⊄ 15,000.00, GH⊄ 25,000.00 and GH⊄ 30,000.00 respectively. They agreed to share 40% of any net profit in the ratio of their contributions to the capital. In 2021, their profit before tax was GH⊄16,800 and 45% of this was paid to the government as tax.
 - a) Calculate the share of the profit received by each partner.
 - b) Dereck invested his share of the profit in 2021 at 12% per annum simple interest. Calculate the interest earned in 8 years.
 - c) Express Dereck's share of the profit in 2021 together with the interest earned on it in 8 years as a percentage of his initial contribution to the capital.
- 11. a) In the diagram ABC is a semicircle, center O and radius 9cm. the line BD is perpendicular to the diameter AC and $< AOB = 135^{\circ}$.
 - i. Find the length of BD, leave your answer in surd form.
 - ii. Find the perimeter of the shaded region
 - iii. Find the area of the unshaded region.

b) Find the value(s) of x which $\frac{2}{x^2+x-6}$ is not defined.

12. a) Using a scale of 2cm to 2 units on both axes, draw on a sheet of graph paper two perpendicular axes 0x and 0y for $-10 \le x \le 10$ and $-10 \le y \le 10$.

b) Given points E(3, 2), F(-1, 5) and the vectors $\overrightarrow{FG} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\overrightarrow{GH} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, find the coordinates of the points G and H.

- c) Draw on the same graph, indicating clearly the vertices and their coordinates, the:
 - i. quadrilateral *EFGH*.
 - ii. image $E_1F_1G_1H_1$ of the quadrilateral *EFGH* under an anticlockwise rotation of 90° about the origin where $E \to E_1$, $F \to F_1$, $G \to G_1$, $H \to H_1$.
 - d) The side E_1F_1 of the quadrilateral $E_1F_1G_1H_1$ cuts the *x* axis at the point *P*. Calculate, correct to **one** decimal place, the area of $E_1H_1G_1P$.
- 13. a)The operation Δ is defined on the set of real numbers by $x \Delta y = 9 2xy$ in modulo arithmetic 11.
 - i Draw a table for Δ on the set T = {5, 7, 9, 10}
 - ii from your table find the truth set of: α) $n \Delta (n + 2) = n$ β) $n \Delta n = 1$
- b) Find the truth set of $\frac{1}{2}x \frac{1}{3}(x+3) < x + 1\frac{1}{3}$ where x is a real number and Illustrate your answer on a number line

END OF PAPER